FREQUENCIES VARIABLES=BLOCKCH WTP_PAY VERIMP INVORIE TMPORIE TCHFAM LUXATT AGE_CON
/NTILES=4
/STATISTICS=MEAN MEDIAN SUM
/HISTOGRAM
/ORDER=ANALYSIS.
Frequencies
Statistics
| Blockchain Verification (0=Traditional, 1=Blockchain) | Willingness to Pay (1-7) | VERIMP | Investment Orientation (Mean) | Temporal Orientation (Mean w/items 3-4 reversed) | TCHFAM | LUXATT | AGE_CON |
N | Valid | 299 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Missing | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mean | .49 | 4.0700 | 3.2833 | 4.3800 | 4.4850 | 4.3000 | 3.2407 | 40.03 |
Median | .00 | 4.0000 | 3.0000 | 4.6667 | 4.5000 | 4.3333 | 3.0000 | 38.00 |
Sum | 146 | 1221.00 | 985.00 | 1314.00 | 1345.50 | 1290.00 | 972.20 | 12009 |
Percentiles | 25 | .00 | 3.0000 | 2.0000 | 3.3333 | 4.0000 | 3.0000 | 2.0000 | 30.25 |
50 | .00 | 4.0000 | 3.0000 | 4.6667 | 4.5000 | 4.3333 | 3.0000 | 38.00 |
75 | 1.00 | 5.0000 | 4.0000 | 5.5833 | 5.1875 | 5.3333 | 4.4000 | 49.00 |
Frequency Table
Blockchain Verification (0=Traditional, 1=Blockchain)
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 0 | 153 | 51.0 | 51.2 | 51.2 |
1 | 146 | 48.7 | 48.8 | 100.0 |
Total | 299 | 99.7 | 100.0 | |
Missing | System | 1 | .3 | | |
Total | 300 | 100.0 | | |
Willingness to Pay (1-7)
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 1.00 | 24 | 8.0 | 8.0 | 8.0 |
2.00 | 41 | 13.7 | 13.7 | 21.7 |
3.00 | 40 | 13.3 | 13.3 | 35.0 |
4.00 | 57 | 19.0 | 19.0 | 54.0 |
5.00 | 78 | 26.0 | 26.0 | 80.0 |
6.00 | 43 | 14.3 | 14.3 | 94.3 |
7.00 | 17 | 5.7 | 5.7 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
VERIMP
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 1.00 | 25 | 8.3 | 8.3 | 8.3 |
2.00 | 58 | 19.3 | 19.3 | 27.7 |
3.00 | 78 | 26.0 | 26.0 | 53.7 |
4.00 | 85 | 28.3 | 28.3 | 82.0 |
5.00 | 54 | 18.0 | 18.0 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
Investment Orientation (Mean)
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 1.00 | 4 | 1.3 | 1.3 | 1.3 |
1.33 | 1 | .3 | .3 | 1.7 |
1.67 | 5 | 1.7 | 1.7 | 3.3 |
2.00 | 25 | 8.3 | 8.3 | 11.7 |
2.33 | 2 | .7 | .7 | 12.3 |
2.67 | 11 | 3.7 | 3.7 | 16.0 |
3.00 | 20 | 6.7 | 6.7 | 22.7 |
3.33 | 19 | 6.3 | 6.3 | 29.0 |
3.67 | 12 | 4.0 | 4.0 | 33.0 |
4.00 | 28 | 9.3 | 9.3 | 42.3 |
4.33 | 20 | 6.7 | 6.7 | 49.0 |
4.67 | 20 | 6.7 | 6.7 | 55.7 |
5.00 | 33 | 11.0 | 11.0 | 66.7 |
5.33 | 25 | 8.3 | 8.3 | 75.0 |
5.67 | 19 | 6.3 | 6.3 | 81.3 |
6.00 | 34 | 11.3 | 11.3 | 92.7 |
6.33 | 9 | 3.0 | 3.0 | 95.7 |
6.67 | 3 | 1.0 | 1.0 | 96.7 |
7.00 | 10 | 3.3 | 3.3 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
Temporal Orientation (Mean w/items 3-4 reversed)
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 1.75 | 1 | .3 | .3 | .3 |
2.25 | 3 | 1.0 | 1.0 | 1.3 |
2.50 | 2 | .7 | .7 | 2.0 |
2.75 | 1 | .3 | .3 | 2.3 |
3.00 | 16 | 5.3 | 5.3 | 7.7 |
3.25 | 8 | 2.7 | 2.7 | 10.3 |
3.50 | 13 | 4.3 | 4.3 | 14.7 |
3.75 | 21 | 7.0 | 7.0 | 21.7 |
4.00 | 44 | 14.7 | 14.7 | 36.3 |
4.25 | 34 | 11.3 | 11.3 | 47.7 |
4.50 | 25 | 8.3 | 8.3 | 56.0 |
4.75 | 27 | 9.0 | 9.0 | 65.0 |
5.00 | 30 | 10.0 | 10.0 | 75.0 |
5.25 | 27 | 9.0 | 9.0 | 84.0 |
5.50 | 21 | 7.0 | 7.0 | 91.0 |
5.75 | 8 | 2.7 | 2.7 | 93.7 |
6.00 | 12 | 4.0 | 4.0 | 97.7 |
6.25 | 5 | 1.7 | 1.7 | 99.3 |
6.50 | 1 | .3 | .3 | 99.7 |
6.75 | 1 | .3 | .3 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
TCHFAM
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 1.00 | 7 | 2.3 | 2.3 | 2.3 |
1.33 | 4 | 1.3 | 1.3 | 3.7 |
1.67 | 2 | .7 | .7 | 4.3 |
2.00 | 16 | 5.3 | 5.3 | 9.7 |
2.33 | 15 | 5.0 | 5.0 | 14.7 |
2.67 | 9 | 3.0 | 3.0 | 17.7 |
3.00 | 24 | 8.0 | 8.0 | 25.7 |
3.33 | 12 | 4.0 | 4.0 | 29.7 |
3.67 | 21 | 7.0 | 7.0 | 36.7 |
4.00 | 20 | 6.7 | 6.7 | 43.3 |
4.33 | 24 | 8.0 | 8.0 | 51.3 |
4.67 | 24 | 8.0 | 8.0 | 59.3 |
5.00 | 31 | 10.3 | 10.3 | 69.7 |
5.33 | 18 | 6.0 | 6.0 | 75.7 |
5.67 | 26 | 8.7 | 8.7 | 84.3 |
6.00 | 23 | 7.7 | 7.7 | 92.0 |
6.33 | 6 | 2.0 | 2.0 | 94.0 |
6.67 | 6 | 2.0 | 2.0 | 96.0 |
7.00 | 12 | 4.0 | 4.0 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
LUXATT
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 1.00 | 19 | 6.3 | 6.3 | 6.3 |
1.20 | 8 | 2.7 | 2.7 | 9.0 |
1.40 | 5 | 1.7 | 1.7 | 10.7 |
1.60 | 5 | 1.7 | 1.7 | 12.3 |
1.80 | 16 | 5.3 | 5.3 | 17.7 |
2.00 | 32 | 10.7 | 10.7 | 28.3 |
2.20 | 11 | 3.7 | 3.7 | 32.0 |
2.40 | 11 | 3.7 | 3.7 | 35.7 |
2.60 | 21 | 7.0 | 7.0 | 42.7 |
2.80 | 15 | 5.0 | 5.0 | 47.7 |
3.00 | 14 | 4.7 | 4.7 | 52.3 |
3.20 | 9 | 3.0 | 3.0 | 55.3 |
3.40 | 19 | 6.3 | 6.3 | 61.7 |
3.60 | 10 | 3.3 | 3.3 | 65.0 |
3.80 | 7 | 2.3 | 2.3 | 67.3 |
4.00 | 13 | 4.3 | 4.3 | 71.7 |
4.20 | 8 | 2.7 | 2.7 | 74.3 |
4.40 | 10 | 3.3 | 3.3 | 77.7 |
4.60 | 8 | 2.7 | 2.7 | 80.3 |
4.80 | 7 | 2.3 | 2.3 | 82.7 |
5.00 | 12 | 4.0 | 4.0 | 86.7 |
5.20 | 11 | 3.7 | 3.7 | 90.3 |
5.40 | 6 | 2.0 | 2.0 | 92.3 |
5.60 | 5 | 1.7 | 1.7 | 94.0 |
5.80 | 3 | 1.0 | 1.0 | 95.0 |
6.00 | 5 | 1.7 | 1.7 | 96.7 |
6.20 | 4 | 1.3 | 1.3 | 98.0 |
6.40 | 1 | .3 | .3 | 98.3 |
6.80 | 3 | 1.0 | 1.0 | 99.3 |
7.00 | 2 | .7 | .7 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
HistogramBlockchain Verification (0=Traditional, 1=Blockchain)
Willingness to Pay (1-7)
VERIMP
Investment Orientation (Mean)
Temporal Orientation (Mean w/items 3-4 reversed)
TCHFAM
LUXATT
AGE_CON
FREQUENCIES VARIABLES=BLOCKCH PURFREQ AGEGRP GENDER INCOME GEN_CON
/NTILES=4
/STATISTICS=MEAN MEDIAN SUM
/HISTOGRAM
/ORDER=ANALYSIS.
Frequencies
Statistics
| Blockchain Verification (0=Traditional, 1=Blockchain) | PURFREQ | AGEGRP | GENDER | INCOME | GEN_CON |
N | Valid | 299 | 300 | 300 | 300 | 300 | 300 |
Missing | 1 | 0 | 0 | 0 | 0 | 0 |
Mean | .49 | | | | | |
Median | .00 | | | | | |
Sum | 146 | | | | | |
Percentiles | 25 | .00 | | | | | |
50 | .00 | | | | | |
75 | 1.00 | | | | | |
Frequency Table
Blockchain Verification (0=Traditional, 1=Blockchain)
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 0 | 153 | 51.0 | 51.2 | 51.2 |
1 | 146 | 48.7 | 48.8 | 100.0 |
Total | 299 | 99.7 | 100.0 | |
Missing | System | 1 | .3 | | |
Total | 300 | 100.0 | | |
PURFREQ
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | Frequently (more than 5 times per year) | 6 | 2.0 | 2.0 | 2.0 |
Never | 83 | 27.7 | 27.7 | 29.7 |
Occasionally (1-2 times per year) | 64 | 21.3 | 21.3 | 51.0 |
Rarely (less than once per year) | 134 | 44.7 | 44.7 | 95.7 |
Regularly (3-5 times per year) | 13 | 4.3 | 4.3 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
AGEGRP
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | 18-24 | 38 | 12.7 | 12.7 | 12.7 |
25-34 | 79 | 26.3 | 26.3 | 39.0 |
35-44 | 79 | 26.3 | 26.3 | 65.3 |
45-54 | 61 | 20.3 | 20.3 | 85.7 |
55-64 | 25 | 8.3 | 8.3 | 94.0 |
65 or older | 18 | 6.0 | 6.0 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
GENDER
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | Female | 150 | 50.0 | 50.0 | 50.0 |
Male | 149 | 49.7 | 49.7 | 99.7 |
Prefer not to say | 1 | .3 | .3 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
INCOME
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | $100,000 - $149,999 | 54 | 18.0 | 18.0 | 18.0 |
$150,000 - $199,999 | 21 | 7.0 | 7.0 | 25.0 |
$200,000 or more | 13 | 4.3 | 4.3 | 29.3 |
$25,000 - $49,999 | 62 | 20.7 | 20.7 | 50.0 |
$50,000 - $74,999 | 59 | 19.7 | 19.7 | 69.7 |
$75,000 - $99,999 | 46 | 15.3 | 15.3 | 85.0 |
Less than $25,000 | 38 | 12.7 | 12.7 | 97.7 |
Prefer not to say | 7 | 2.3 | 2.3 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
GEN_CON
| Frequency | Percent | Valid Percent | Cumulative Percent |
Valid | Man | 149 | 49.7 | 49.7 | 49.7 |
Woman | 151 | 50.3 | 50.3 | 100.0 |
Total | 300 | 100.0 | 100.0 | |
RELIABILITY
/VARIABLES=INV_OR1 INV_OR2 INV_OR3
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA.
Reliability
Scale: ALL VARIABLES
Case Processing Summary
| N | % |
Cases | Valid | 300 | 100.0 |
Excludeda | 0 | .0 |
Total | 300 | 100.0 |
a. Listwise deletion based on all variables in the procedure. |
Reliability Statistics
Cronbach's Alpha | N of Items |
.912 | 3 |
RELIABILITY
/VARIABLES=TMP_OR1 TMP_OR2 TMP_OR3R TMP_OR4R
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA.
Reliability
Scale: ALL VARIABLES
Case Processing Summary
| N | % |
Cases | Valid | 300 | 100.0 |
Excludeda | 0 | .0 |
Total | 300 | 100.0 |
a. Listwise deletion based on all variables in the procedure. |
Reliability Statistics
Cronbach's Alpha | N of Items |
.379 | 4 |
RELIABILITY
/VARIABLES=TCH_FM1 TCH_FM2 TCH_FM3
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA.
Reliability
Scale: ALL VARIABLES
Case Processing Summary
| N | % |
Cases | Valid | 300 | 100.0 |
Excludeda | 0 | .0 |
Total | 300 | 100.0 |
a. Listwise deletion based on all variables in the procedure. |
Reliability Statistics
Cronbach's Alpha | N of Items |
.874 | 3 |
RELIABILITY
/VARIABLES=LUX_AT1 LUX_AT2 LUX_AT3 LUX_AT4 LUX_AT5
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA.
Reliability
Scale: ALL VARIABLES
Case Processing Summary
| N | % |
Cases | Valid | 300 | 100.0 |
Excludeda | 0 | .0 |
Total | 300 | 100.0 |
a. Listwise deletion based on all variables in the procedure. |
Reliability Statistics
Cronbach's Alpha | N of Items |
.909 | 5 |
T-TEST GROUPS=BLOCKCH(0 1)
/MISSING=ANALYSIS
/VARIABLES=WTP_PAY VERIMP WTPOVRL INVORIE TMPORIE LUXATT TCHFAM
/ES DISPLAY(TRUE)
/CRITERIA=CI(.95).
T-Test
Group Statistics
Blockchain Verification (0=Traditional, 1=Blockchain) | N | Mean | Std. Deviation | Std. Error Mean |
Willingness to Pay (1-7) | 0 | 153 | 4.1176 | 1.65012 | .13340 |
1 | 146 | 4.0342 | 1.66677 | .13794 |
VERIMP | 0 | 153 | 3.1438 | 1.23234 | .09963 |
1 | 146 | 3.4315 | 1.16801 | .09667 |
Overall Willingness to Pay (Mean) | 0 | 153 | 4.4902 | 1.46726 | .11862 |
1 | 146 | 4.5685 | 1.41863 | .11741 |
Investment Orientation (Mean) | 0 | 153 | 4.1089 | 1.39382 | .11268 |
1 | 146 | 4.6598 | 1.44130 | .11928 |
Temporal Orientation (Mean w/items 3-4 reversed) | 0 | 153 | 4.5033 | .89313 | .07221 |
1 | 146 | 4.4623 | .86221 | .07136 |
LUXATT | 0 | 153 | 3.0876 | 1.40016 | .11320 |
1 | 146 | 3.4055 | 1.52206 | .12597 |
TCHFAM | 0 | 153 | 4.3529 | 1.43180 | .11575 |
1 | 146 | 4.2352 | 1.52686 | .12636 |
Independent Samples Test
| Levene's Test for Equality of Variances | t-test for Equality of Means |
F | Sig. | t | df | Sig. (2-tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference |
Lower | Upper |
Willingness to Pay (1-7) | Equal variances assumed | .045 | .833 | .435 | 297 | .664 | .08340 | .19185 | -.29416 | .46096 |
Equal variances not assumed | | | .435 | 296.037 | .664 | .08340 | .19190 | -.29426 | .46106 |
VERIMP | Equal variances assumed | .223 | .637 | -2.070 | 297 | .039 | -.28772 | .13899 | -.56125 | -.01418 |
Equal variances not assumed | | | -2.073 | 296.987 | .039 | -.28772 | .13882 | -.56090 | -.01453 |
Overall Willingness to Pay (Mean) | Equal variances assumed | .077 | .782 | -.469 | 297 | .640 | -.07830 | .16703 | -.40701 | .25042 |
Equal variances not assumed | | | -.469 | 296.948 | .639 | -.07830 | .16690 | -.40675 | .25016 |
Investment Orientation (Mean) | Equal variances assumed | .003 | .959 | -3.360 | 297 | .001 | -.55088 | .16396 | -.87356 | -.22821 |
Equal variances not assumed | | | -3.357 | 295.090 | .001 | -.55088 | .16409 | -.87382 | -.22795 |
Temporal Orientation (Mean w/items 3-4 reversed) | Equal variances assumed | .267 | .606 | .403 | 297 | .687 | .04094 | .10160 | -.15901 | .24089 |
Equal variances not assumed | | | .403 | 296.959 | .687 | .04094 | .10152 | -.15884 | .24072 |
LUXATT | Equal variances assumed | 2.037 | .155 | -1.881 | 297 | .061 | -.31790 | .16902 | -.65053 | .01474 |
Equal variances not assumed | | | -1.877 | 292.057 | .061 | -.31790 | .16935 | -.65121 | .01541 |
TCHFAM | Equal variances assumed | 1.308 | .254 | .688 | 297 | .492 | .11778 | .17111 | -.21896 | .45452 |
Equal variances not assumed | | | .687 | 293.381 | .492 | .11778 | .17137 | -.21948 | .45505 |
Independent Samples Effect Sizes
| Standardizera | Point Estimate | 95% Confidence Interval |
Lower | Upper |
Willingness to Pay (1-7) | Cohen's d | 1.65827 | .050 | -.177 | .277 |
Hedges' correction | 1.66248 | .050 | -.176 | .276 |
Glass's delta | 1.66677 | .050 | -.177 | .277 |
VERIMP | Cohen's d | 1.20136 | -.239 | -.467 | -.012 |
Hedges' correction | 1.20441 | -.239 | -.466 | -.012 |
Glass's delta | 1.16801 | -.246 | -.474 | -.017 |
Overall Willingness to Pay (Mean) | Cohen's d | 1.44373 | -.054 | -.281 | .173 |
Hedges' correction | 1.44738 | -.054 | -.280 | .172 |
Glass's delta | 1.41863 | -.055 | -.282 | .172 |
Investment Orientation (Mean) | Cohen's d | 1.41720 | -.389 | -.617 | -.159 |
Hedges' correction | 1.42079 | -.388 | -.616 | -.159 |
Glass's delta | 1.44130 | -.382 | -.613 | -.151 |
Temporal Orientation (Mean w/items 3-4 reversed) | Cohen's d | .87817 | .047 | -.180 | .273 |
Hedges' correction | .88040 | .047 | -.180 | .273 |
Glass's delta | .86221 | .047 | -.179 | .274 |
LUXATT | Cohen's d | 1.46094 | -.218 | -.445 | .010 |
Hedges' correction | 1.46464 | -.217 | -.444 | .010 |
Glass's delta | 1.52206 | -.209 | -.437 | .020 |
TCHFAM | Cohen's d | 1.47897 | .080 | -.147 | .306 |
Hedges' correction | 1.48272 | .079 | -.147 | .306 |
Glass's delta | 1.52686 | .077 | -.150 | .304 |
a. The denominator used in estimating the effect sizes.
Cohen's d uses the pooled standard deviation.
Hedges' correction uses the pooled standard deviation, plus a correction factor.
Glass's delta uses the sample standard deviation of the control group. |
ONEWAY WTP_PAY VERIMP WTPOVRL INVORIE TMPORIE TCHFAM LUXATT BY BLOCKCH
/STATISTICS DESCRIPTIVES
/MISSING ANALYSIS
/CRITERIA=CILEVEL(0.95).
Oneway
Descriptives
| N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum |
Lower Bound | Upper Bound |
Willingness to Pay (1-7) | 0 | 153 | 4.1176 | 1.65012 | .13340 | 3.8541 | 4.3812 | 1.00 | 7.00 |
1 | 146 | 4.0342 | 1.66677 | .13794 | 3.7616 | 4.3069 | 1.00 | 7.00 |
Total | 299 | 4.0769 | 1.65601 | .09577 | 3.8885 | 4.2654 | 1.00 | 7.00 |
VERIMP | 0 | 153 | 3.1438 | 1.23234 | .09963 | 2.9470 | 3.3406 | 1.00 | 5.00 |
1 | 146 | 3.4315 | 1.16801 | .09667 | 3.2405 | 3.6226 | 1.00 | 5.00 |
Total | 299 | 3.2843 | 1.20797 | .06986 | 3.1468 | 3.4218 | 1.00 | 5.00 |
Overall Willingness to Pay (Mean) | 0 | 153 | 4.4902 | 1.46726 | .11862 | 4.2558 | 4.7246 | 1.00 | 7.00 |
1 | 146 | 4.5685 | 1.41863 | .11741 | 4.3364 | 4.8005 | 1.00 | 7.00 |
Total | 299 | 4.5284 | 1.44183 | .08338 | 4.3643 | 4.6925 | 1.00 | 7.00 |
Investment Orientation (Mean) | 0 | 153 | 4.1089 | 1.39382 | .11268 | 3.8863 | 4.3316 | 1.00 | 7.00 |
1 | 146 | 4.6598 | 1.44130 | .11928 | 4.4241 | 4.8956 | 1.00 | 7.00 |
Total | 299 | 4.3779 | 1.44146 | .08336 | 4.2139 | 4.5420 | 1.00 | 7.00 |
Temporal Orientation (Mean w/items 3-4 reversed) | 0 | 153 | 4.5033 | .89313 | .07221 | 4.3606 | 4.6459 | 2.25 | 6.75 |
1 | 146 | 4.4623 | .86221 | .07136 | 4.3213 | 4.6034 | 1.75 | 6.25 |
Total | 299 | 4.4833 | .87693 | .05071 | 4.3835 | 4.5831 | 1.75 | 6.75 |
TCHFAM | 0 | 153 | 4.3529 | 1.43180 | .11575 | 4.1242 | 4.5816 | 1.00 | 7.00 |
1 | 146 | 4.2352 | 1.52686 | .12636 | 3.9854 | 4.4849 | 1.00 | 7.00 |
Total | 299 | 4.2954 | 1.47767 | .08546 | 4.1273 | 4.4636 | 1.00 | 7.00 |
LUXATT | 0 | 153 | 3.0876 | 1.40016 | .11320 | 2.8639 | 3.3112 | 1.00 | 7.00 |
1 | 146 | 3.4055 | 1.52206 | .12597 | 3.1565 | 3.6544 | 1.00 | 7.00 |
Total | 299 | 3.2428 | 1.46715 | .08485 | 3.0758 | 3.4098 | 1.00 | 7.00 |
ANOVA
| Sum of Squares | df | Mean Square | F | Sig. |
Willingness to Pay (1-7) | Between Groups | .520 | 1 | .520 | .189 | .664 |
Within Groups | 816.711 | 297 | 2.750 | | |
Total | 817.231 | 298 | | | |
VERIMP | Between Groups | 6.184 | 1 | 6.184 | 4.285 | .039 |
Within Groups | 428.652 | 297 | 1.443 | | |
Total | 434.836 | 298 | | | |
Overall Willingness to Pay (Mean) | Between Groups | .458 | 1 | .458 | .220 | .640 |
Within Groups | 619.050 | 297 | 2.084 | | |
Total | 619.508 | 298 | | | |
Investment Orientation (Mean) | Between Groups | 22.672 | 1 | 22.672 | 11.288 | .001 |
Within Groups | 596.511 | 297 | 2.008 | | |
Total | 619.183 | 298 | | | |
Temporal Orientation (Mean w/items 3-4 reversed) | Between Groups | .125 | 1 | .125 | .162 | .687 |
Within Groups | 229.041 | 297 | .771 | | |
Total | 229.166 | 298 | | | |
TCHFAM | Between Groups | 1.036 | 1 | 1.036 | .474 | .492 |
Within Groups | 649.645 | 297 | 2.187 | | |
Total | 650.682 | 298 | | | |
LUXATT | Between Groups | 7.550 | 1 | 7.550 | 3.537 | .061 |
Within Groups | 633.902 | 297 | 2.134 | | |
Total | 641.452 | 298 | | | |
* Encoding: UTF-8.
preserve.
set printback=off.
Matrix
Run MATRIX procedure:
***************** PROCESS Procedure for SPSS Version 4.2 *****************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3
**************************************************************************
Model : 4
Y : WTP_PAY
X : BLOCKCH
M : INVORIE
Sample
Size: 299
**************************************************************************
OUTCOME VARIABLE:
INVORIE
Model Summary
R R-sq MSE F df1 df2 p
.1914 .0366 2.0085 11.2884 1.0000 297.0000 .0009
Model
coeff se t p LLCI ULCI
constant 4.1089 .1146 35.8628 .0000 3.8835 4.3344
BLOCKCH .5509 .1640 3.3598 .0009 .2282 .8736
**************************************************************************
OUTCOME VARIABLE:
WTP_PAY
Model Summary
R R-sq MSE F df1 df2 p
.2511 .0630 2.5869 9.9564 2.0000 296.0000 .0001
Model
coeff se t p LLCI ULCI
constant 2.9163 .3002 9.7142 .0000 2.3255 3.5071
BLOCKCH -.2445 .1896 -1.2895 .1982 -.6176 .1286
INVORIE .2924 .0659 4.4398 .0000 .1628 .4220
****************** DIRECT AND INDIRECT EFFECTS OF X ON Y *****************
Direct effect of X on Y
Effect se t p LLCI ULCI
-.2445 .1896 -1.2895 .1982 -.6176 .1286
Indirect effect(s) of X on Y:
Effect BootSE BootLLCI BootULCI
INVORIE .1611 .0667 .0495 .3103
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95.0000
Number of bootstrap samples for percentile bootstrap confidence intervals:
5000
------ END MATRIX -----
* Encoding: UTF-8.
preserve.
set printback=off.
Matrix
Run MATRIX procedure:
***************** PROCESS Procedure for SPSS Version 4.2 *****************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3
**************************************************************************
Model : 1
Y : WTP_PAY
X : BLOCKCH
W : TMPORIE
Sample
Size: 299
**************************************************************************
OUTCOME VARIABLE:
WTP_PAY
Model Summary
R R-sq MSE F df1 df2 p
.2211 .0489 2.6349 5.0531 3.0000 295.0000 .0020
Model
coeff se t p LLCI ULCI
constant 4.9184 .6767 7.2682 .0000 3.5866 6.2501
BLOCKCH -3.4482 .9812 -3.5144 .0005 -5.3792 -1.5172
TMPORIE -.1778 .1474 -1.2062 .2287 -.4679 .1123
Int_1 .7524 .2149 3.5015 .0005 .3295 1.1753
Product terms key:
Int_1 : BLOCKCH x TMPORIE
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
X*W .0395 12.2604 1.0000 295.0000 .0005
----------
Focal predict: BLOCKCH (X)
Mod var: TMPORIE (W)
Conditional effects of the focal predictor at values of the moderator(s):
TMPORIE Effect se t p LLCI ULCI
3.6063 -.7347 .2658 -2.7640 .0061 -1.2579 -.2116
4.4833 -.0749 .1879 -.3988 .6903 -.4446 .2948
5.3602 .5849 .2663 2.1961 .0289 .0607 1.1091
Moderator value(s) defining Johnson-Neyman significance region(s):
Value % below % above
4.0297 36.4548 63.5452
5.2295 74.9164 25.0836
Conditional effect of focal predictor at values of the moderator:
TMPORIE Effect se t p LLCI ULCI
1.7500 -2.1315 .6163 -3.4585 .0006 -3.3444 -.9186
2.0132 -1.9335 .5627 -3.4360 .0007 -3.0409 -.8260
2.2763 -1.7355 .5098 -3.4045 .0008 -2.7387 -.7322
2.5395 -1.5375 .4577 -3.3594 .0009 -2.4382 -.6368
2.8026 -1.3395 .4068 -3.2930 .0011 -2.1400 -.5389
3.0658 -1.1415 .3576 -3.1924 .0016 -1.8451 -.4378
3.3289 -.9435 .3109 -3.0349 .0026 -1.5552 -.3317
3.5921 -.7454 .2680 -2.7816 .0058 -1.2729 -.2180
3.8553 -.5474 .2311 -2.3690 .0185 -1.0022 -.0927
4.0297 -.4162 .2115 -1.9680 .0500 -.8323 .0000
4.1184 -.3494 .2034 -1.7179 .0869 -.7498 .0509
4.3816 -.1514 .1891 -.8009 .4238 -.5235 .2207
4.6447 .0466 .1911 .2437 .8076 -.3295 .4226
4.9079 .2446 .2090 1.1702 .2429 -.1667 .6559
5.1711 .4426 .2392 1.8499 .0653 -.0283 .9134
5.2295 .4865 .2472 1.9680 .0500 .0000 .9730
5.4342 .6406 .2778 2.3056 .0218 .0938 1.1874
5.6974 .8386 .3218 2.6061 .0096 .2053 1.4718
5.9605 1.0366 .3692 2.8079 .0053 .3101 1.7631
6.2237 1.2346 .4188 2.9477 .0035 .4103 2.0589
6.4868 1.4326 .4701 3.0477 .0025 .5075 2.3577
6.7500 1.6306 .5224 3.1214 .0020 .6025 2.6587
Data for visualizing the conditional effect of the focal predictor:
Paste text below into a SPSS syntax window and execute to produce plot.
DATA LIST FREE/
BLOCKCH TMPORIE WTP_PAY .
BEGIN DATA.
.0000 3.6063 4.2771
1.0000 3.6063 3.5424
.0000 4.4833 4.1212
1.0000 4.4833 4.0463
.0000 5.3602 3.9653
1.0000 5.3602 4.5502
END DATA.
GRAPH/SCATTERPLOT=
TMPORIE WITH WTP_PAY BY BLOCKCH .
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95.0000
W values in conditional tables are the mean and +/- SD from the mean.
------ END MATRIX -----
* Encoding: UTF-8.
preserve.
set printback=off.
Matrix
Run MATRIX procedure:
***************** PROCESS Procedure for SPSS Version 4.2 *****************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3
**************************************************************************
Model : 1
Y : WTP_PAY
X : BLOCKCH
W : TCHFAM
Sample
Size: 299
**************************************************************************
OUTCOME VARIABLE:
WTP_PAY
Model Summary
R R-sq MSE F df1 df2 p
.0795 .0063 2.7528 .6249 3.0000 295.0000 .5994
Model
coeff se t p LLCI ULCI
constant 3.7268 .4306 8.6557 .0000 2.8794 4.5741
BLOCKCH -.0286 .5919 -.0483 .9615 -1.1934 1.1362
TCHFAM .0898 .0940 .9554 .3402 -.0952 .2748
Int_1 -.0104 .1303 -.0801 .9362 -.2669 .2460
Product terms key:
Int_1 : BLOCKCH x TCHFAM
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
X*W .0000 .0064 1.0000 295.0000 .9362
----------
Focal predict: BLOCKCH (X)
Mod var: TCHFAM (W)
Data for visualizing the conditional effect of the focal predictor:
Paste text below into a SPSS syntax window and execute to produce plot.
DATA LIST FREE/
BLOCKCH TCHFAM WTP_PAY .
BEGIN DATA.
.0000 2.8178 3.9798
1.0000 2.8178 3.9218
.0000 4.2954 4.1125
1.0000 4.2954 4.0390
.0000 5.7731 4.2452
1.0000 5.7731 4.1563
END DATA.
GRAPH/SCATTERPLOT=
TCHFAM WITH WTP_PAY BY BLOCKCH .
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95.0000
------ END MATRIX -----
* Encoding: UTF-8.
preserve.
set printback=off.
Matrix
Run MATRIX procedure:
***************** PROCESS Procedure for SPSS Version 4.2 *****************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3
**************************************************************************
Model : 7
Y : WTP_PAY
X : BLOCKCH
M : INVORIE
W : TMPORIE
Sample
Size: 299
**************************************************************************
OUTCOME VARIABLE:
INVORIE
Model Summary
R R-sq MSE F df1 df2 p
.2050 .0420 2.0107 4.3142 3.0000 295.0000 .0054
Model
coeff se t p LLCI ULCI
constant 3.3898 .5911 5.7344 .0000 2.2264 4.5532
BLOCKCH 1.4889 .8571 1.7371 .0834 -.1979 3.1757
TMPORIE .1597 .1288 1.2401 .2159 -.0937 .4131
Int_1 -.2087 .1877 -1.1120 .2670 -.5782 .1607
Product terms key:
Int_1 : BLOCKCH x TMPORIE
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
X*W .0040 1.2366 1.0000 295.0000 .2670
----------
Focal predict: BLOCKCH (X)
Mod var: TMPORIE (W)
Data for visualizing the conditional effect of the focal predictor:
Paste text below into a SPSS syntax window and execute to produce plot.
DATA LIST FREE/
BLOCKCH TMPORIE INVORIE .
BEGIN DATA.
.0000 3.6063 3.9657
1.0000 3.6063 4.7018
.0000 4.4833 4.1057
1.0000 4.4833 4.6588
.0000 5.3602 4.2458
1.0000 5.3602 4.6158
END DATA.
GRAPH/SCATTERPLOT=
TMPORIE WITH INVORIE BY BLOCKCH .
**************************************************************************
OUTCOME VARIABLE:
WTP_PAY
Model Summary
R R-sq MSE F df1 df2 p
.2511 .0630 2.5869 9.9564 2.0000 296.0000 .0001
Model
coeff se t p LLCI ULCI
constant 2.9163 .3002 9.7142 .0000 2.3255 3.5071
BLOCKCH -.2445 .1896 -1.2895 .1982 -.6176 .1286
INVORIE .2924 .0659 4.4398 .0000 .1628 .4220
****************** DIRECT AND INDIRECT EFFECTS OF X ON Y *****************
Direct effect of X on Y
Effect se t p LLCI ULCI
-.2445 .1896 -1.2895 .1982 -.6176 .1286
Conditional indirect effects of X on Y:
INDIRECT EFFECT:
BLOCKCH -> INVORIE -> WTP_PAY
TMPORIE Effect BootSE BootLLCI BootULCI
3.6063 .2152 .0888 .0617 .4134
4.4833 .1617 .0657 .0496 .3048
5.3602 .1082 .0796 -.0272 .2838
Index of moderated mediation:
Index BootSE BootLLCI BootULCI
TMPORIE -.0610 .0604 -.1875 .0554
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95.0000
Number of bootstrap samples for percentile bootstrap confidence intervals:
5000
W values in conditional tables are the mean and +/- SD from the mean.
------ END MATRIX -----
* Encoding: UTF-8.
preserve.
set printback=off.
Matrix
Run MATRIX procedure:
***************** PROCESS Procedure for SPSS Version 4.2 *****************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3
**************************************************************************
Model : 14
Y : WTP_PAY
X : BLOCKCH
M : INVORIE
W : TMPORIE
Sample
Size: 299
**************************************************************************
OUTCOME VARIABLE:
INVORIE
Model Summary
R R-sq MSE F df1 df2 p
.1914 .0366 2.0085 11.2884 1.0000 297.0000 .0009
Model
coeff se t p LLCI ULCI
constant 4.1089 .1146 35.8628 .0000 3.8835 4.3344
BLOCKCH .5509 .1640 3.3598 .0009 .2282 .8736
**************************************************************************
OUTCOME VARIABLE:
WTP_PAY
Model Summary
R R-sq MSE F df1 df2 p
.2834 .0803 2.5565 6.4167 4.0000 294.0000 .0001
Model
coeff se t p LLCI ULCI
constant 4.5971 1.4278 3.2197 .0014 1.7871 7.4072
BLOCKCH -.2151 .1889 -1.1387 .2558 -.5869 .1567
INVORIE -.2736 .3179 -.8609 .3900 -.8992 .3519
TMPORIE -.3761 .3141 -1.1975 .2321 -.9943 .2420
Int_1 .1255 .0694 1.8078 .0717 -.0111 .2622
Product terms key:
Int_1 : INVORIE x TMPORIE
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
M*W .0102 3.2680 1.0000 294.0000 .0717
----------
Focal predict: INVORIE (M)
Mod var: TMPORIE (W)
Conditional effects of the focal predictor at values of the moderator(s):
TMPORIE Effect se t p LLCI ULCI
3.6063 .1791 .0892 2.0068 .0457 .0035 .3547
4.4833 .2892 .0655 4.4140 .0000 .1602 .4181
5.3602 .3993 .0896 4.4536 .0000 .2228 .5757
Moderator value(s) defining Johnson-Neyman significance region(s):
Value % below % above
3.5905 14.7157 85.2843
Conditional effect of focal predictor at values of the moderator:
TMPORIE Effect se t p LLCI ULCI
1.7500 -.0540 .2005 -.2691 .7881 -.4486 .3407
2.0000 -.0226 .1842 -.1225 .9026 -.3851 .3399
2.2500 .0088 .1681 .0525 .9582 -.3220 .3396
2.5000 .0402 .1522 .2641 .7919 -.2594 .3398
2.7500 .0716 .1368 .5234 .6011 -.1976 .3408
3.0000 .1030 .1218 .8453 .3987 -.1368 .3427
3.2500 .1344 .1076 1.2488 .2127 -.0774 .3461
3.5000 .1657 .0944 1.7555 .0802 -.0201 .3515
3.5905 .1771 .0900 1.9681 .0500 .0000 .3542
3.7500 .1971 .0828 2.3809 .0179 .0342 .3601
4.0000 .2285 .0735 3.1101 .0021 .0839 .3731
4.2500 .2599 .0674 3.8551 .0001 .1272 .3926
4.5000 .2913 .0655 4.4450 .0000 .1623 .4202
4.7500 .3227 .0682 4.7337 .0000 .1885 .4568
5.0000 .3540 .0748 4.7307 .0000 .2068 .5013
5.2500 .3854 .0846 4.5554 .0000 .2189 .5520
5.5000 .4168 .0965 4.3177 .0000 .2268 .6068
5.7500 .4482 .1099 4.0775 .0001 .2319 .6645
6.0000 .4796 .1243 3.8585 .0001 .2350 .7242
6.2500 .5110 .1393 3.6669 .0003 .2367 .7852
6.5000 .5424 .1549 3.5016 .0005 .2375 .8472
6.7500 .5737 .1708 3.3596 .0009 .2376 .9098
Data for visualizing the conditional effect of the focal predictor:
Paste text below into a SPSS syntax window and execute to produce plot.
DATA LIST FREE/
INVORIE TMPORIE WTP_PAY .
BEGIN DATA.
2.9365 3.6063 3.6615
4.3779 3.6063 3.9196
5.8194 3.6063 4.1778
2.9365 4.4833 3.6549
4.3779 4.4833 4.0717
5.8194 4.4833 4.4886
2.9365 5.3602 3.6483
4.3779 5.3602 4.2238
5.8194 5.3602 4.7994
END DATA.
GRAPH/SCATTERPLOT=
INVORIE WITH WTP_PAY BY TMPORIE .
****************** DIRECT AND INDIRECT EFFECTS OF X ON Y *****************
Direct effect of X on Y
Effect se t p LLCI ULCI
-.2151 .1889 -1.1387 .2558 -.5869 .1567
Conditional indirect effects of X on Y:
INDIRECT EFFECT:
BLOCKCH -> INVORIE -> WTP_PAY
TMPORIE Effect BootSE BootLLCI BootULCI
3.6063 .0987 .0639 -.0061 .2420
4.4833 .1593 .0659 .0482 .3100
5.3602 .2200 .0898 .0711 .4232
Index of moderated mediation:
Index BootSE BootLLCI BootULCI
TMPORIE .0692 .0475 -.0065 .1798
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95.0000
Number of bootstrap samples for percentile bootstrap confidence intervals:
5000
W values in conditional tables are the mean and +/- SD from the mean.
------ END MATRIX -----
* Encoding: UTF-8.
preserve.
set printback=off.
Matrix
Run MATRIX procedure:
***************** PROCESS Procedure for SPSS Version 4.2 *****************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3
**************************************************************************
Model : 7
Y : WTP_PAY
X : BLOCKCH
M : INVORIE
W : TCHFAM
Sample
Size: 299
**************************************************************************
OUTCOME VARIABLE:
INVORIE
Model Summary
R R-sq MSE F df1 df2 p
.2323 .0539 1.9857 5.6067 3.0000 295.0000 .0009
Model
coeff se t p LLCI ULCI
constant 3.5827 .3657 9.7972 .0000 2.8630 4.3023
BLOCKCH .5048 .5027 1.0043 .3161 -.4844 1.4941
TCHFAM .1209 .0798 1.5145 .1310 -.0362 .2780
Int_1 .0142 .1107 .1286 .8978 -.2036 .2320
Product terms key:
Int_1 : BLOCKCH x TCHFAM
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
X*W .0001 .0165 1.0000 295.0000 .8978
----------
Focal predict: BLOCKCH (X)
Mod var: TCHFAM (W)
Data for visualizing the conditional effect of the focal predictor:
Paste text below into a SPSS syntax window and execute to produce plot.
DATA LIST FREE/
BLOCKCH TCHFAM INVORIE .
BEGIN DATA.
.0000 2.8178 3.9233
1.0000 2.8178 4.4683
.0000 4.2954 4.1020
1.0000 4.2954 4.6680
.0000 5.7731 4.2806
1.0000 5.7731 4.8676
END DATA.
GRAPH/SCATTERPLOT=
TCHFAM WITH INVORIE BY BLOCKCH .
**************************************************************************
OUTCOME VARIABLE:
WTP_PAY
Model Summary
R R-sq MSE F df1 df2 p
.2511 .0630 2.5869 9.9564 2.0000 296.0000 .0001
Model
coeff se t p LLCI ULCI
constant 2.9163 .3002 9.7142 .0000 2.3255 3.5071
BLOCKCH -.2445 .1896 -1.2895 .1982 -.6176 .1286
INVORIE .2924 .0659 4.4398 .0000 .1628 .4220
****************** DIRECT AND INDIRECT EFFECTS OF X ON Y *****************
Direct effect of X on Y
Effect se t p LLCI ULCI
-.2445 .1896 -1.2895 .1982 -.6176 .1286
Conditional indirect effects of X on Y:
INDIRECT EFFECT:
BLOCKCH -> INVORIE -> WTP_PAY
TCHFAM Effect BootSE BootLLCI BootULCI
2.8178 .1593 .0851 .0165 .3487
4.2954 .1655 .0670 .0557 .3154
5.7731 .1716 .0851 .0312 .3633
Index of moderated mediation:
Index BootSE BootLLCI BootULCI
TCHFAM .0042 .0355 -.0664 .0779
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95.0000
Number of bootstrap samples for percentile bootstrap confidence intervals:
5000
W values in conditional tables are the mean and +/- SD from the mean.
------ END MATRIX -----
* Encoding: UTF-8.
preserve.
set printback=off.
Matrix
Run MATRIX procedure:
***************** PROCESS Procedure for SPSS Version 4.2 *****************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3
**************************************************************************
Model : 14
Y : WTP_PAY
X : BLOCKCH
M : INVORIE
W : TCHFAM
Sample
Size: 299
**************************************************************************
OUTCOME VARIABLE:
INVORIE
Model Summary
R R-sq MSE F df1 df2 p
.1914 .0366 2.0085 11.2884 1.0000 297.0000 .0009
Model
coeff se t p LLCI ULCI
constant 4.1089 .1146 35.8628 .0000 3.8835 4.3344
BLOCKCH .5509 .1640 3.3598 .0009 .2282 .8736
**************************************************************************
OUTCOME VARIABLE:
WTP_PAY
Model Summary
R R-sq MSE F df1 df2 p
.2563 .0657 2.5970 5.1697 4.0000 294.0000 .0005
Model
coeff se t p LLCI ULCI
constant 3.1756 .9095 3.4917 .0006 1.3857 4.9655
BLOCKCH -.2373 .1904 -1.2461 .2137 -.6120 .1375
INVORIE .1888 .1934 .9761 .3298 -.1919 .5695
TCHFAM -.0559 .2043 -.2735 .7847 -.4580 .3462
Int_1 .0226 .0423 .5336 .5940 -.0607 .1059
Product terms key:
Int_1 : INVORIE x TCHFAM
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
M*W .0009 .2848 1.0000 294.0000 .5940
----------
Focal predict: INVORIE (M)
Mod var: TCHFAM (W)
Data for visualizing the conditional effect of the focal predictor:
Paste text below into a SPSS syntax window and execute to produce plot.
DATA LIST FREE/
INVORIE TCHFAM WTP_PAY .
BEGIN DATA.
2.9365 2.8178 3.6436
4.3779 2.8178 4.0075
5.8194 2.8178 4.3713
2.9365 4.2954 3.6590
4.3779 4.2954 4.0710
5.8194 4.2954 4.4830
2.9365 5.7731 3.6744
4.3779 5.7731 4.1345
5.8194 5.7731 4.5946
END DATA.
GRAPH/SCATTERPLOT=
INVORIE WITH WTP_PAY BY TCHFAM .
****************** DIRECT AND INDIRECT EFFECTS OF X ON Y *****************
Direct effect of X on Y
Effect se t p LLCI ULCI
-.2373 .1904 -1.2461 .2137 -.6120 .1375
Conditional indirect effects of X on Y:
INDIRECT EFFECT:
BLOCKCH -> INVORIE -> WTP_PAY
TCHFAM Effect BootSE BootLLCI BootULCI
2.8178 .1391 .0757 .0186 .3123
4.2954 .1574 .0660 .0474 .3038
5.7731 .1758 .0848 .0372 .3668
Index of moderated mediation:
Index BootSE BootLLCI BootULCI
TCHFAM .0124 .0311 -.0456 .0788
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95.0000
Number of bootstrap samples for percentile bootstrap confidence intervals:
5000
W values in conditional tables are the mean and +/- SD from the mean.
------ END MATRIX -----